6k^2+23k+4=0

Simple and best practice solution for 6k^2+23k+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6k^2+23k+4=0 equation:


Simplifying
6k2 + 23k + 4 = 0

Reorder the terms:
4 + 23k + 6k2 = 0

Solving
4 + 23k + 6k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
0.6666666667 + 3.833333333k + k2 = 0

Move the constant term to the right:

Add '-0.6666666667' to each side of the equation.
0.6666666667 + 3.833333333k + -0.6666666667 + k2 = 0 + -0.6666666667

Reorder the terms:
0.6666666667 + -0.6666666667 + 3.833333333k + k2 = 0 + -0.6666666667

Combine like terms: 0.6666666667 + -0.6666666667 = 0.0000000000
0.0000000000 + 3.833333333k + k2 = 0 + -0.6666666667
3.833333333k + k2 = 0 + -0.6666666667

Combine like terms: 0 + -0.6666666667 = -0.6666666667
3.833333333k + k2 = -0.6666666667

The k term is 3.833333333k.  Take half its coefficient (1.916666667).
Square it (3.673611112) and add it to both sides.

Add '3.673611112' to each side of the equation.
3.833333333k + 3.673611112 + k2 = -0.6666666667 + 3.673611112

Reorder the terms:
3.673611112 + 3.833333333k + k2 = -0.6666666667 + 3.673611112

Combine like terms: -0.6666666667 + 3.673611112 = 3.0069444453
3.673611112 + 3.833333333k + k2 = 3.0069444453

Factor a perfect square on the left side:
(k + 1.916666667)(k + 1.916666667) = 3.0069444453

Calculate the square root of the right side: 1.734054337

Break this problem into two subproblems by setting 
(k + 1.916666667) equal to 1.734054337 and -1.734054337.

Subproblem 1

k + 1.916666667 = 1.734054337 Simplifying k + 1.916666667 = 1.734054337 Reorder the terms: 1.916666667 + k = 1.734054337 Solving 1.916666667 + k = 1.734054337 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1.916666667' to each side of the equation. 1.916666667 + -1.916666667 + k = 1.734054337 + -1.916666667 Combine like terms: 1.916666667 + -1.916666667 = 0.000000000 0.000000000 + k = 1.734054337 + -1.916666667 k = 1.734054337 + -1.916666667 Combine like terms: 1.734054337 + -1.916666667 = -0.18261233 k = -0.18261233 Simplifying k = -0.18261233

Subproblem 2

k + 1.916666667 = -1.734054337 Simplifying k + 1.916666667 = -1.734054337 Reorder the terms: 1.916666667 + k = -1.734054337 Solving 1.916666667 + k = -1.734054337 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1.916666667' to each side of the equation. 1.916666667 + -1.916666667 + k = -1.734054337 + -1.916666667 Combine like terms: 1.916666667 + -1.916666667 = 0.000000000 0.000000000 + k = -1.734054337 + -1.916666667 k = -1.734054337 + -1.916666667 Combine like terms: -1.734054337 + -1.916666667 = -3.650721004 k = -3.650721004 Simplifying k = -3.650721004

Solution

The solution to the problem is based on the solutions from the subproblems. k = {-0.18261233, -3.650721004}

See similar equations:

| -2(-7x)=20 | | 18x+9y=54 | | 6k^2+23+4=0 | | (ab+7)(ab-7)= | | 106-4=3x+15 | | -4x+2= | | 3n+14=47 | | -3[a-1]=-5 | | (u+6)(u+6)=2u^2+11u+6 | | 8c-b= | | 5X-7+15=13x+14 | | (7m+5n)(7m-5n)= | | (x+2)(4x+8)= | | y=x+-3.5-1.4 | | 2g-2=-6 | | (7m+5m)(7m-5m)= | | 27=-4(n+15) | | 3(2x+1)-x+6= | | 7x^2+14x+7y= | | 13x+8x=-9x-22 | | 6y+19=1 | | (3x-4)(9x-1)= | | -0.2x-0.4= | | (25x-30)=10x | | 0.2(x+2)-.04(x+2)= | | (4y-4)(8y-8)= | | 6x+31=9x+10 | | 6x-3x+6=5x-4 | | 3(7+5p)= | | (6a+7)(6a-3)= | | 2a+3b=57 | | (8-5x)(8+5x)= |

Equations solver categories